Physics motivation for future hh-eh colliders

Michele Selvaggi

CERN

The big questions

We know there are fundamental questions that the SM cannot answer

- What is the origin of Dark Matter / Energy?
- What is the origin of matter/anti-matter asymmetry?
- What is the origin on neutrino masses?
- What is the origin of the Electro-weak symmetry breaking?
- What is the solution to hierarchy problem?

There is new physics out there (beyond the Standard Model)

The big questions

Why no new physics at the LHC?

- Two possibilities:
 - New Physics is within the LHC reach
 - but it is elusive (and we might see it at HL-LHC)
 - New Physics is beyond the mass reach of the LHC
- If the LHC sees nothing:
 - roadmap for HEP not as clearly defined as in pre-LHC era
 - no clear no-lose theorem (as with the Higgs)
- Roadmap will consist in exploring new territories:
 - Energy/Intensity frontier exploration

The big questions

- Caveat: no single experiment can:
 - explore all directions at once
 - guarantee discovery
- Goal: design projects that can deliver:
 - precision
 - sensitivity to (as many as possible scenarios of) new physics
 - yes/no answers to concrete scenarios
- HL-LHC will collect data until 2039-2042
- big physics projects take ~20 yrs time to plan and build:
 - now is the right time top start defining the future of HEP

Future machines

Within CERN as host lab, several accelerator facilities have been studied:

- ee-collider (FCC-ee):
 - as a (potential) first step
- pp-collider (FCC-hh)
 - defines infrastructure requirements
 - 16 T → 100 TeV in 100 km tunnel
- HE-LHC:
 - 27 TeV (16T magnets in LHC tunnel)
- Low Energy FCC
 - 37 TeV (6T magnets in FCC tunnel)
- ep collider (LHeC/FCC-eh)
 - 50 GeV 7TeV / 60 GeV 50TeV
 - I TeV/ 3 TeV E_{CM}

Reach at high energies

How does the rate of a given process (e.g. single Higgs production) scale from 14 TeV to 100 TeV

cross-section (
$$\sqrt{s2}$$
, M) $\approx L_1(M) / L_2(M) \approx (s_2 / s_1)^{a(M)}$ cross-section ($\sqrt{s1}$, M)

	σ(27)/σ(14)	σ(100)/σ(14)
ggH	3	15
НН	4	40
ttH	5	55
H (p _T > I TeV)	7	400

Very large rate increase by increasing center of mass energy

NB: this improvement only comes from the cross-section (neglects integrated luminosity)

SM physics @threshold

SM Physics produced at threshold is more forward @100TeV

 \rightarrow in order to maintain sensitivity need large rapidity (with tracking) and low p_T coverage

- Goals:
 - Precision spectroscopy and calorimetry up to $|\eta| < 4$
 - Tracking and calorimetry up to $|\eta| < 6$

low p_T muons → resolution dominated by MS

Why measuring Higgs at high energy pp colliders?

- · High energy pp provides unique and complementary measurements to ee colliders:
 - Higgs self-coupling
 - top Yukawa
 - Higgs → invisible
 - rare decays (BR(μμ), BR(Ζγ), ratios, ..) measurements will be statistically limited at FCC-ee

leed to

$$BR(H \rightarrow XX) / BR(H \rightarrow ZZ) \approx g_X^2 / g_Z^2$$

	HL-LHC	FCC-ee
δΓ _H / Γ _H (%)	SM	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δд _{нμμ} / д _{нμμ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δднι / днι (%)	3.4	_
δg _{HZγ} / g _{HZγ} (%)	9.8	_
δдннн / дннн (%)	50	40
BR _{exo} (95%CL)	BR _{inv} < 2.5%	< 1%

from e+e-

Large rates for rare modes and HH production at FCC-hh

→ complementary to e⁺e⁻

Single Higgs production @FCC-hh

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N³LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

- Improvement factor on stat. unc.:
 - **3-5** at **27 TeV** vs HL-LHC
 - I0 at I00 TeV vs HL-LHC

 $N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$ $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$ $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

Large statistics in various Higgs decay modes allow:

- for % level precision in statistically limited rare channels ($\mu\mu, Z\gamma$)
- in systematics limited channels, to isolate cleaner samples in regions (e.g. @large Higgs pt) with :
 - higher S/B
 - smaller (relative) impact of systematic uncertainties

Ratios of BR($H\rightarrow XX$) / BR($H\rightarrow ZZ$)

- measure ratios of BRs to cancel correlated sources of systematics:
 - luminosity
 - · object efficiencies
 - production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with H→ZZ measurement from e⁺e⁻ (at 0.2%)

Sub-% level precision achievable on BR($H \rightarrow \mu\mu$) and BR($H \rightarrow \gamma\gamma$)

Why the Higgs self-coupling?

$$\mathcal{L}_h = m_h^2 h^2 + \lambda_3 h^3 + \lambda_4 h^4$$

- In the SM, EWSB and λ_3 and λ_4 purely determined by the shape of the Higgs potential
- However, Higgs potential could be different (required by some scenarios of EWK baryogenesis) → has barely been measured
- Measuring the Higgs self-couplings gives a handle on the Higgs potential is determined by the self coupling value

Higgs self-coupling

gluon fusion

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta k_{\lambda} / k_{\lambda} \approx 50\%$
- Expect large improvement at high energy pp:
 - $\sigma(100 \text{ TeV})/\sigma(14 \text{ TeV}) \approx 40 \text{ (and Lx 10)}$
 - x400 in event yields and x20 in precision
 - $\sigma(27 \, \text{TeV})/\sigma(14 \, \text{TeV}) \approx 4 \, (\text{ and Lx5})$
 - x25 in event yields and x5 in precision

Self-coupling at future pp colliders

2004.03505 [hep-ph]

Expected precision:

		00 Te	\geq V $_{FCC-l}$	hh Simulat	ion (Delphes)
П Г			 Combined (state 	11 1 100 000 000 000 000	
-2∆ In L	$\sqrt{s} = 100 \text{ Te}$ $L = 30 \text{ ab}^{-1}$		Combinedbbγγ		
	8	\ <u>=</u>	 bbτ_hτ_h+bbτ_hτ_l bbZZ(4l) bbbb 	1 /	/
		\\		1 //	
	6				
	4		<i>.</i>	M_{\odot}	
				//	
	2		· //		
	8.7 0.8	0.9		1.1	1.2 1.3
	5 5.0	0.0	•		k_{λ}

@68% CL	scenario I	scenario II	scenario III
bbyy	3.8	5.9	10.0
bb au au	9.8	12.2	13.8
bbbb	22.3	27.1	32.0
comb.	3.4	5.1	7.8

- Combined precision (100 TeV):
 - 3.5-8% for SM (100 TeV)
 - **10-20%** for $\lambda_3 = 1.5 \times \lambda_3$ SM
- Combined precision:
 - 10-20% for SM (27 TeV)

Summary of Higgs direct measurements

Observable	Parameter	Precision	Precision
		(stat)	(stat+syst+lumi)
$\mu = \sigma(H) \times B(H \to \gamma \gamma)$	$\delta\mu/\mu$	0.1%	1.45%
$\mu = \sigma(H) \times B(H \rightarrow \mu \mu)$	$\delta \mu/\mu$	0.28%	1.22%
$\mu = \sigma(H) \times B(H \rightarrow 4\mu)$	$\delta \mu/\mu$	0.18%	1.85%
$\mu = \sigma(H) \times B(H \rightarrow \gamma \mu \mu)$	$\delta \mu/\mu$	0.55%	1.61%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	$\delta R/R$	0.33%	1.3%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	$\delta R/R$	0.17%	0.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	$\delta R/R$	0.29%	1.38%
$R = B(H \rightarrow \mu \mu \gamma)/B(H \rightarrow \mu \mu)$	$\delta R/R$	0.58%	1.82%
$R = \sigma(t\bar{t}H) \times B(H \to b\bar{b}) / \sigma(t\bar{t}Z) \times B(Z \to b\bar{b})$	$\delta R/R$	1.05%	1.9%
$B(H \rightarrow invisible)$	$B@95\%\mathrm{CL}$	1×10^{-4}	2.5×10^{-4}
HH production	$\delta \lambda / \lambda$	3.0-5.6%	3.4 – 7.8%

also in [2203.06520]

$\delta R/R$	HE-LHC	LE-FCC	FCC-hh
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2e2\mu)$	1.7%	1.5%	0.8%
$R = B(H \rightarrow \mu\mu)/B(H \rightarrow 4\mu)$	3.6%	2.9%	1.3%
$R = B(H \rightarrow \mu\mu\gamma)/B(H \rightarrow \mu\mu)$	8.4%	6%	1.8%
$R = B(H \rightarrow \gamma \gamma)/B(H \rightarrow 2\mu)$	3.5 %	2.8%	1.4%

- Percent level precision on $\sigma \times BR$ in most rare decay channels achievable only at 100 TeV
- Percent level precision on couplings if HZZ coupling known from FCC-ee (to 0.2%)

Heavy resonances high energy pp

	HL-LHC		FC	C-hh	
	$\sqrt{s} = 14 \text{ TeV},$ $\int Ldt = 3 \text{ ab}^{-1}$		√s = 100 TeV, ∫Ldt = 30 ab ⁻¹		
Model	5 σ 9	95% CL	5 σ 9	95% CL	
	[TeV]	[TeV]	[TeV] [TeV]		
Strong	gly Produ	ced Dijet F	Resonand	es	
Diquark	8.7	9.4	57	63	
Coloron	7.1	7.8	45	51	
q*	7.0	7.9	44	50	
Weak	dy Produ	ced Dijet F	Resonanc	es	
W'	4.8	5.6	29	36	
Z'	4.2	5.2	25	32	
RS grav.	3.5	4.4	21	27	
Top Squa	ark $\tilde{t}_1\tilde{t}_1$	$\rightarrow (t \ \tilde{\chi}_1^0) (t)$	$\tilde{\chi}_1^0$), $m(\tilde{\chi}_1^0)$	$\binom{0}{1} = 0$	
$ ilde{t}_1$	1.3	1.7	9.6	10.8	

also in [2202.03389]

- High mass resonances Z \rightarrow ee/ $\mu\mu$ / j j / tt ... reach should scale as $\sqrt{s/14}$ TeV
- Provide crucial benchmarks for optimising detector design:
 - High momentum tracks and muons
 - Boosted hadronic signatures ...

WIMPs/Disappearing tracks

- Observed relic density of Dark Matter Higgsino-like: ITeV, Wino-like: 3TeV
 - Mass degeneracy: wino 170MeV, Higgsino 350MeV
- Wino/Higgsino LSP meta-stable chargino, cT= 6cm(wino)
 7mm(higgsino)
- Useful tools to optimise detector concepts

LHeC/FCC-eh

- Cleanest high resolution microscope
- Considerably extends HERA reach
- Rich physics programme:
 - SM:
 - QCD and proton/nuclear physics
 - Electro-weak (and anomalous couplings)
 - Top/FCNCs
 - Higgs
 - BSM:
 - Heavy neutrinos, ALPs

LHeC/FCC-eh (QCD)

- Probe the proton structure with color neutral states
- Full determination of all parton flavour to unprecedented precision (low and high-x)

- Explore low-x regime :
 - Saturation?
 - Transverse Momentum Dependent (TMDs)
 - Generalized parton distribution functions (GPDs)

LHeC/FCC-eh (SM/Top/Higgs)

CC DIS single-top quark production

NC (yp) top-quark pair production

Direct measurement of V_{tb} from single top:

$$\overline{t}$$
 \overline{b}
 $V = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix}$

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \quad |V_{ts,td}| < 0.04$$

Charged current

Neutral current

Interplay between pp and ep

(shown here: LHeC & HL-LHC - similarly for FCC-hh/eh)

Complementarity between pp and ep

LHeC/FCC-eh (BSM)

Highest reach for Heavy Neutral lepton searches (HNLs):

- long-lived
- prompt

- Rich BSM physics programme for FCC-eh
 - Lepton-quarks
 - LFV processes
 - Anomalous couplings
 - Contact interactions

Conclusions

- A next generation of accelerators is needed to study the Higgs sector and explore the energy frontier
- An LHeC/FCC-eh machine would provide excellent knowledge of the proton and complementary measurements to e+e- and high energy hh
- A high energy pp machine allows to further explore the unknowns:
 - Precisely measure Higgs properties (complementary couplings to Higgs factories)
 - Most precise exploration of the Higgs potential
 - Directly access WIMP dark matter
 - Access unknown unknowns ...

Backup

Machine specs and detector requirements

lumi & pile-up

parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14	14	27	100
circumference	km	26.7	26.7	26.7	97.8
$ m peak~\mathcal{L}~ imes 10^{34}$	${\rm cm^{-2}s^{-1}}$	1	5	25	30
bunch spacing	ns	25	25	25	25
number of bunches		2808	2808	2808	10600
$\operatorname{goal} \int \mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn	85	85	91	108
σ_{tot}	mbarn	111	111	126	153
BC rate	MHz	31.6	31.6	31.6	32.5
peak pp collision rate	GHz	0.85	4.25	22.8	32.4
peak av. PU events/BC		27	135	721	997
rms luminous region σ_z	mm	45	57	57	49
line PU density	mm^{-1}	0.2	0.9	5	8.1
time PU density	ps ⁻¹	0.1	0.28	1.51	2.43
$ dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
charged tracks per collision N_{ch}		95	95	108	130
Rate of charged tracks	GHz	76	380	2500	4160
$ < p_T>$	GeV/c	0.6	0.6	0.7	0.76
umber of pp collisions	10^{16}	2.6	26	91	324
harged part. flux at 2.5 cm est.(FLUKA)	GHzcm^{-2}	0.1	0.7	2.7	8.4 (12)
MeV-neq fluence at 2.5 cm est.(FLUKA)	$10^{16}{\rm cm}^{-2}$	0.4	3.9	16.8	84.3 (60)
otal ionising dose at 2.5 cm est.(FLUKA)	MGy	1.3	13	54	270 (400)
$E/d\eta _{\eta=5}$	GeV	316	316	427	765
$P/d\eta _{\eta=5}$	kW	0.04	0.2	1.0	4.0

→ x6 HL-LHC

LHC: 30 PU events/bc HL-LHC: 140 PU events/bc

FCC-hh: 1000 PU events/bc

but also x10 integrated luminosity w.r.t to HL-LHC

High granularity and precision timing needed to reduce occupancy levels and for pile-up rejection

Reach at high energies (I)

To compute reach, we assume we need to observe given number of events:

dimensional analysis

 \mathscr{L} : integrated luminosity

L_{parton}: parton luminosity

Higgs @threshold

SM Physics produced at threshold is more forward @100TeV

 \rightarrow in order to maintain sensitivity need large rapidity (with tracking) and low p_T coverage

- Goals:
 - Precision spectroscopy and calorimetry up to $|\eta| < 4$
 - Tracking and calorimetry up to $|\eta| < 6$

low p_T muons → resolution dominated by MS

Higgs at large pt

Huge rates at large pt:

- > 106 Higgs produced with p_T > 1 TeV
- Higher probability to produce large p_T Higgs from ttH/VBF/VH at large
- Even rare decay modes can be accessed at large pt

Opportunity to measure the Higgs in a new dynamical regime

Higgs pt spectrum highly sensitive to new physics.

1500

2000

- highly granular sub-detectors:
 - Tracker pixel: 10 μ m @ 2cm $\rightarrow \sigma_{\eta \times \phi} \approx 5$ mrad
 - Calorimeters: 2 cm @ 2m $\rightarrow \sigma_{\eta \times \phi} \approx 10 \text{ mrad}$
- good energy/pt resolution at large pt:
 - $\sigma_p / p = 2\%$ @ I TeV

The FCC-hh detector

An FCC-hh detector

- Must be able to cope with:
 - very large dynamic range of signatures (E = 20 GeV -20 TeV)
 - hostile environment (1k pile-up and up to 10¹⁸ cm⁻² MeV neq fluence)
- Characteristics:
 - large acceptance (for low p_T physics)
 - extreme granularity (for high p_T and pile-up rejection)
 - timing capabilities
 - radiation hardness

An FCC-hh detector that can do the job

Tracker

- $-6 < \eta < 6$ coverage
- pixel : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 15-30 \mu m$, X/X₀(layer) $\sim 0.5-1.5\%$
- outer : $\sigma_{r\phi} \sim 10 \mu m$, $\sigma_Z \sim 30-100 \mu m$, $X/X_0(layer) \sim 1.5-3\%$

Calorimeters

- ECAL: LArg, $30X_0$, I.6 λ , r = 1.7-2.7 m (barrel)
- HCAL: Fe/Sci, 9 λ , r = 2.8 4.8 m (barrel)

Magnet

- central R = 5, L = 10 m, B = 4T
- forward R = 3m, L = 3m, B = 4T

Muon spectrometer

- Two stations separated by I-2 m
- 50 μm pos., 70μrad angular

Muons

- pT = 4 GeV muons enter the muon system
- pT = 5.5 GeV leave coil at 45 degrees

- Calo + Coil = $180-280 X_0$
- Standalone muon measurement with angle of track exiting the coil
- Target muon resolution can be easily achieved with 50 μ m position resolution (combining with tracker)
- Good standalone resolution below $|\eta| < 2.5$
- Rates manageable with HL-LHC technology (sMDT)

Data rates and trigger

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
$b\overline{b}$ rate	MHz	5	25	250	750
$b\overline{b} \ p_T^{ m b} > 30{ m GeV/c}$ cross-section	μb	1.6	1.6	4.3	28
$b\overline{b} \ p_T^{ m b} > 30{ m GeV/c}$ rate	MHz	0.02	0.08	1	8
Jets $p_T^{jet} > 50 \text{GeV/c}$ cross-section [341]	μb	21	21	56	300
Jets $p_T^{jet} > 50 \mathrm{GeV/c}$ rate	MHz	0.2	1.1	14	90

Need more selectivity at Level I (full allocated Phasell bandwidth for single muon pt > 30 GeV)!

- ATLAS/CMS calorimeters/muons readout @40MHz and sent via optical fibres to Level I trigger outside the cavern to create LI trigger decisions (25 Tb/s)
- Full detector readout @IMHz (@40MHz ~ 200 Tb/s)

• FCC-hh:

- At FCC-hh Calo+Muon would correspond to 250 Tb/s (seems feasible)
- However full detector would correspond to I-2 Pb/s
 - Seems hardly feasible (30 yrs from now)
- More selectivity needed @LI (4D hit information?)

Strategy for R & D

- High profile R&d program needs to be carried on to make this possible, (leverage HL-LHC efforts)
- Possible Directions:
 - Radiation hard silicon detectors
 - High precision timing
 - Low power, high speed links
 - Highly segmented calorimeters (3D imaging calorimeters)
 - Software, reconstruction algorithms (4D particle-flow, boosted object tagging)
 - Large scale muon systems
 - Magnets
 - Cryogenics

CERN has released a document On plans for R&D as input to European Strategy: CERN-OPEN-2018-006

Strategic R&D Programme on

Technologies for Future Experiments

Recap: Higgs @ e+e- colliders

Higgs tagged by a Z, Higgs mass from Z recoil

$$m_H^2 = s + m_Z^2 - 2\sqrt{s}(E_+ + E_-)$$

Higgs recoil mass measurement → production cross section:

- 106 Higgs produced @ FCC-ee
- rate $\sim g_Z^2 \rightarrow \delta g_Z/g_Z \sim 0.1 \%$
- Then measure ZH → ZZZ
- rate $\sim g_Z$ 4 / Γ_H \rightarrow $\delta \Gamma_H$ / Γ_H \sim 1 %
- Then measure ZH → ZXX
- rate ~ $g_Z^2 g_X^2 / \Gamma_H \rightarrow \delta g_X/g_X \sim 1 \%$

provides absolute gz coupling in e+e-

BUT limited statistics:

- for rare decay modes
- HH production

Coupling measurements at ee vs hh

At pp colliders we can only measure:

$$\sigma_{\text{prod}} BR(i) = \sigma_{\text{prod}} \Gamma_i / \Gamma_H$$

→ we do not know the total width.

In order to perform global fits, we have to make model-dependent assumptions

Instead, by performing measurements of ratios of BRs at hadron colliders:

$$BR(H\rightarrow XX)$$
 / $BR(H\rightarrow ZZ) \approx g_X^2$ / g_Z^2 from e+e

We can "convert" relative measurements into absolute via gz thanks to e⁺e⁻ measurement

→ synergy between lepton and hadron colliders

Top Yukawa (production)

- production ratio $\sigma(ttH)/\sigma(ttZ) \approx y_t^2 y_b^2/g_{ttZ}^2$
- measure $\sigma(ttH)/\sigma(ttZ)$ in $H/Z \rightarrow bb$ mode in the boosted regime, in the semi-leptonic channel
- perform simultaneous fit of double Z and H peak
- · (lumi, scales, pdfs, efficiency) uncertainties cancel out in ratio
- assuming g_{ttZ} and K_b known to 1% (from FCC-ee),
 - \rightarrow measure y_t to 1%

Higgs decays: γγ - ZZ - Zγ - μμ

- 1% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+α_S uncertainties with HL-LHC + FCC-ee.
- $e/\mu/\gamma$ efficiency systematics (shown on the right). In situ calibration, with the immense available statistics in possibly new clean channels $(Z \rightarrow \mu \mu \gamma)$, will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of m_H to within few GeV.
 - backgrounds (physics and instrumental) to be determined with great precision from sidebands (~ infinite statistics)
 - Impact of pile-up: hard to estimate with today's analyses.
- → Focus on high-p_T objects will help to decrease relative impact of pile-up
 - Following scenarios are considered:
 - $\begin{array}{ccc} \bullet & \delta_{stat} & \rightarrow & stat. \ only \ (I) \ \ (signal + bkg) \\ \bullet & \delta_{stat} \ , \delta_{eff} & \rightarrow & stat. \ + \ syst. \ (II) \end{array}$
 - δ_{stat} , δ_{eff} , $\delta_{\text{prod}} = 1\%$ \rightarrow stat. + syst. + prod (III)

Higgs decays (signal strenth)

- study sensitivity as a function of minimum $p_T(H)$ requirement in the $\chi \gamma$, ZZ(4I), $\mu \mu$ and $Z(II) \gamma$ channels
- low p_T(H): large statistics and high syst. unc.
- large p_T(H): small statistics and small syst. unc.
- O(1-2%) precision on BR achievable up to very high p_T (means 0.5-1% on the couplings)

- 1% lumi + theory uncertainty
- p_T dependent object efficiency:
 - $\delta \epsilon (e/\gamma) = 0.5 (1)\%$ at $p_T \rightarrow \infty$
 - $\delta \epsilon(\mu) = 0.25 (0.5)\%$ at $p_T \rightarrow \infty$

H→invisible

X (inv)
X (inv)
H

jet(s)

- Measure it from H + X at large p_T(H)
- Fit the E_Tmiss spectrum
- Constrain background p_T spectrum from $Z \rightarrow \nu \nu$ to the % level using NNLO QCD/EW to relate to measured Z,W and γ spectra (low stat)
- Estimate $Z \rightarrow VV$ (W $\rightarrow IV$) from $Z \rightarrow ee/\mu\mu$ (W $\rightarrow IV$) control regions (high stat).

Standalone 100 TeV Higgs measurements

• Following the principle of reducing as much as possible the impact of systematics assumptions on future measurements, additional ratio measurements:

parton level study

p_T^{min}		W[e]Z[e]	W[e]H	$W[\ell]Z[e]$	$W[\ell]H[\gamma\gamma]$	$\delta R/R$
	(GeV)	(pb)	(pb)	\times L	\times L	
	100	2.1E-2	1.0E-1	1.3E6	1.4E4	8.5E-3
ľ	150	1.0E-2	6.3E-2	6.0E5	8.7E3	1.1E-2
	200	5.6E-3	3.8E-2	3.4E5	5.2E3	1.4E-2
	300	2.1E-3	1.6E-2	1.3E5	2.2E3	2.1E-2

p_T^{min}	W[e]Z[τ]	W[e]H	$W[\ell]Z[\tau]$	$W[\ell]H[\tau\tau]$	$\delta R/R$
(GeV)	(pb)	(pb)	$\times \varepsilon_{\tau} L$	$\times \epsilon_\tau \; L$	
100	2.1E-2	1.0E-1	1.3E5	3.8E4	5.9E-3
150	1.0E-2	6.3E-2	6.0E4	2.4E4	7.7E-3
200	5.6E-3	3.8E-2	3.4E4	1.4E4	1.0E-2
300	2.1E-3	1.6E-2			
400	0.015.4	7.0E.2	p_T^{min}	W[e]+bb	W[e]Z[

$\delta G/G < 19$	%
-------------------	---

p_T^{min}	W[e]+bb	W[e]Z[bb]	W[e]+bb	W[e]H	$W[\ell]$ bb	$W[\ell]Z[bb]$	$W[\ell]$ bb	$W[\ell]H[bb]$	$\delta R/R$
(GeV)	(pb)	(pb)	(pb)	(pb)	$\times \varepsilon_b L$	$ imes arepsilon_b L$	$ imes arepsilon_b L$	$\times \varepsilon_b$ L	
	$m[bb] \in m_Z$		$m[bb] \in m_H$		$m[bb] \in m_Z$		$m[bb] \in m_H$		
200	3.3E-2	2.5E-2	2.3E-2	3.8E-2	9.9E5	7.5E4	6.9E5	6.6E5	2.5E-3
300	1.2E-2	9.2E - 3	8.8E - 3	1.6E-2	3.6E5	5.5E4	2.6E5	2.8E5	3.2E-3
400	5.5E-3	4.3E-3	4.1E-3	7.9E - 3	1.7E5	2.6E5	1.2E5	1.4E5	4.5E-3
600	1.7E-3	1.4E-3	1.3E-3	2.6E-3	5.1E4	8.4E4	3.9E4	4.5E4	7.8E-3
800	6.8E-4	6.2E-4	5.0E-4	1.2E-3	2.0E4	3.7E4	1.5E4	2.1E4	1.1E-2

Higgs Self-coupling and constraints on models with 1st order EWPT

- Strong 1st order electroweak phase transition (and CP violation) needed to explain large observed baryon asymmetry in our universe
- Can be achieved with extension of SM + singlet

Direct detection of extra Higgs states

Combined constraints from precision Higgs measurements at FCC-ee and FCC-hh

Parameter space scan for a singlet model extension of the Standard Model. The points indicate a first order phase transition.

large mww

Vector Boson Scattering

- Sets constraints on detector acceptance (fwd jets at $\eta \approx 4$)
- Study W+/-W+/- (same-sign) channel
- Large WZ background at FCC-hh
- 3-4% precision on W_LW_L scattering xsec. achievable with full dataset (only 3σ HL-LHC)
- Indirect measurement of HWW coupling possible, $\delta \kappa_W / \kappa_W \approx 2\%$

Table 4.5: Constraints on the HWW coupling modifier κ_W at 68% CL, obtained for various cuts on the di-lepton pair invariant mass in the $W_LW_L \to HH$ process.

$m_{l^+l^+}$ cut	> 50 GeV	$> 200~{ m GeV}$	$> 500~{ m GeV}$	$> 1000~{ m GeV}$
$\kappa_W \in$	[0.98,1.05]	[0.99,1.04]	[0.99,1.03]	[0.98,1.02]

$W_LW_L \rightarrow HH$

With c_V from FCC-ee, $\delta c_{2V} < 1\%$

Towards defining the FCChh detector

Physics constraints

- The boosted regime:
 - → measure leptons, jets, photons, muons originating multi-TeV resonances

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$

Calorimeters:
$$\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$$

- Tracking target : $\sigma / p = 20\% @ 10 \text{ TeV}$
- Muons target: $\sigma / p = 10\%$ @20 TeV
- Calorimeters target: containment of $p_T = 20 \text{ TeV}$ jets

high p_T muons

Towards defining the FCChh detector

Physics constraints

- The boosted regime:
 - → measure b-jets, taus from multi-TeV resonances
 - Long-lived particles live longer:
 - ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV tau lepton travels 10 cm before decaying
 - → extend pixel detector further?
 - useful also for exotic topologies
 (disappearing tracks and generic BSM Long-lived charged particles)
 - · number of channels over large area can get too high
 - → re-think reconstruction algorithms:
 - hard to reconstruct displaced vertices
 - exploit hit multiplicity discontinuity

Only 71% 5 TeV b-hadrons decay < 5th layer.

displaced vertices

SM physics @ 100 TeV

$$x_1 * x_2 * s = M^2$$

SM Physics is more forward @100TeV

- in order to maintain sensitivity in need large rapidity (with tracking) and low p_T coverage
 - → highly challenging levels of radiation at large rapidities

- Precision spectroscopy and calorimetry up to $|\eta| < 4$
- Tracking and calorimetry up to |η| < 6

Photon resolution with PU

Invariant mass for two photon events (E_{γ} >40GeV)

Large impact of in time PU on the noise term (out of the box with no improvements)!!

- severely degrades m_{XX} resolution (improving clustering, not sliding windows may help)
- impacts Higgs self-coupling precision by $\delta \kappa_{\lambda} \approx 1\%$
- some thought needed (tracking, timing information can help?)

High Mass resonances

- Constant term drives jet energy resolution at high p_T
- Directly impacts sensitivity for excluding discovering narrow resonance high mass resonances $Z' \rightarrow jj$
- Small impact on strongly coupled (wide) resonances

Precision vs. sensitivity

- We often talk about "precise" SM measurements. What we actually aim at is "sensitive" tests of the Standard Model, where sensitive refers to the ability to reveal BSM behaviours.
- Sensitivity may not require extreme precision. Going after "sensitivity", rather than just precision, opens itself new opportunities.
- For example, in the context of dim. 6 operators in EFT, some operators grow with energy:

BR measurement:
$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{\text{TeV}}{\Lambda}\right)^2$$

 \Rightarrow precision probes large Λ

e.g.
$$\delta O=1\% \Rightarrow \Lambda \sim 2.5 \text{ TeV}$$

$$\sigma(\mathsf{p}_\mathsf{T} > \mathsf{X})$$
: $\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$

 \Rightarrow kinematic reach probes large \land